3.8.51 \(\int \frac {\sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\) [751]

3.8.51.1 Optimal result
3.8.51.2 Mathematica [A] (warning: unable to verify)
3.8.51.3 Rubi [A] (verified)
3.8.51.4 Maple [B] (verified)
3.8.51.5 Fricas [F]
3.8.51.6 Sympy [F(-1)]
3.8.51.7 Maxima [F]
3.8.51.8 Giac [F]
3.8.51.9 Mupad [F(-1)]

3.8.51.1 Optimal result

Integrand size = 25, antiderivative size = 314 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=-\frac {4 (a-b) b \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {a+b} (a+2 b) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^2 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a d} \]

output
2/3*sec(d*x+c)^(3/2)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/a/d-4/3*(a-b)*b*csc 
(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a 
-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1 
/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^3/d/sec(d*x+c)^(1/2)+2/3*(a+2*b)*csc( 
d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a- 
b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/ 
2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d/sec(d*x+c)^(1/2)
 
3.8.51.2 Mathematica [A] (warning: unable to verify)

Time = 10.70 (sec) , antiderivative size = 322, normalized size of antiderivative = 1.03 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {4 \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (2 b (a+b) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+a (a-2 b) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+b \cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 a^2 d \sqrt {a+b \cos (c+d x)} \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )}}+\frac {\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {4 b \sin (c+d x)}{3 a^2}+\frac {2 \tan (c+d x)}{3 a}\right )}{d} \]

input
Integrate[Sec[c + d*x]^(5/2)/Sqrt[a + b*Cos[c + d*x]],x]
 
output
(4*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(2*b*(a + b)*Sqrt[Cos[c + d*x]/(1 
 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]* 
EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + a*(a - 2*b)*Sqrt[C 
os[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Co 
s[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + b*Co 
s[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(3*a 
^2*d*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) + (Sqrt[a + b*Cos[ 
c + d*x]]*Sqrt[Sec[c + d*x]]*((-4*b*Sin[c + d*x])/(3*a^2) + (2*Tan[c + d*x 
])/(3*a)))/d
 
3.8.51.3 Rubi [A] (verified)

Time = 1.02 (sec) , antiderivative size = 299, normalized size of antiderivative = 0.95, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4710, 3042, 3281, 27, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4710

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3281

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \int -\frac {2 b-a \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{3 a}+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\int \frac {2 b-a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{3 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\int \frac {2 b-a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 a}\right )\)

\(\Big \downarrow \) 3477

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 b \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-(a+2 b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{3 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 b \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(a+2 b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 a}\right )\)

\(\Big \downarrow \) 3295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 b \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} (a+2 b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{3 a}\right )\)

\(\Big \downarrow \) 3473

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {4 b (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d}-\frac {2 \sqrt {a+b} (a+2 b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{3 a}\right )\)

input
Int[Sec[c + d*x]^(5/2)/Sqrt[a + b*Cos[c + d*x]],x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-1/3*((4*(a - b)*b*Sqrt[a + b]*Cot[ 
c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c 
 + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[ 
(a*(1 + Sec[c + d*x]))/(a - b)])/(a^2*d) - (2*Sqrt[a + b]*(a + 2*b)*Cot[c 
+ d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + 
 d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a 
*(1 + Sec[c + d*x]))/(a - b)])/(a*d))/a + (2*Sqrt[a + b*Cos[c + d*x]]*Sin[ 
c + d*x])/(3*a*d*Cos[c + d*x]^(3/2)))
 

3.8.51.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3281
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f* 
x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2 
))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n 
 + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n + 3)*Si 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2* 
n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 4710
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Sin[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
3.8.51.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1201\) vs. \(2(280)=560\).

Time = 12.19 (sec) , antiderivative size = 1202, normalized size of antiderivative = 3.83

method result size
default \(\text {Expression too large to display}\) \(1202\)

input
int(sec(d*x+c)^(5/2)/(a+cos(d*x+c)*b)^(1/2),x,method=_RETURNVERBOSE)
 
output
2/3/d*sec(d*x+c)^(5/2)/(1+cos(d*x+c))/(a+cos(d*x+c)*b)^(1/2)*(-cos(d*x+c)^ 
4*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/ 
(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2+2*cos(d* 
x+c)^4*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c 
)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b-2*c 
os(d*x+c)^4*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+c 
os(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a* 
b-2*cos(d*x+c)^4*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c) 
/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2 
))*b^2-2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c) 
)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*c 
os(d*x+c)^3+4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d 
*x+c))/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))* 
a*b*cos(d*x+c)^3-4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+ 
cos(d*x+c))/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1 
/2))*a*b*cos(d*x+c)^3-4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b 
)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b 
))^(1/2))*b^2*cos(d*x+c)^3-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c 
)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/( 
a+b))^(1/2))*a^2*cos(d*x+c)^2+2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)...
 
3.8.51.5 Fricas [F]

\[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {5}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \]

input
integrate(sec(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")
 
output
integral(sec(d*x + c)^(5/2)/sqrt(b*cos(d*x + c) + a), x)
 
3.8.51.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)**(5/2)/(a+b*cos(d*x+c))**(1/2),x)
 
output
Timed out
 
3.8.51.7 Maxima [F]

\[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {5}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \]

input
integrate(sec(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(sec(d*x + c)^(5/2)/sqrt(b*cos(d*x + c) + a), x)
 
3.8.51.8 Giac [F]

\[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {5}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \]

input
integrate(sec(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(sec(d*x + c)^(5/2)/sqrt(b*cos(d*x + c) + a), x)
 
3.8.51.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

input
int((1/cos(c + d*x))^(5/2)/(a + b*cos(c + d*x))^(1/2),x)
 
output
int((1/cos(c + d*x))^(5/2)/(a + b*cos(c + d*x))^(1/2), x)